1,369 research outputs found

    Study and Characterization of a Camera-based Distributed System for Large-Volume Dimensional Metrology Applications

    Get PDF
    Large-Volume Dimensional Metrology (LVDM) deals with dimensional inspection of large objects with dimensions in the order of tens up to hundreds of meters. Typical large volume dimensional metrology applications concern the assembly/disassembly phase of large objects, referring to industrial engineering. Based on different technologies and measurement principles, a wealth of LVDM systems have been proposed and developed in the literature, just to name a few, e.g., optical based systems such as laser tracker, laser radar, and mechanical based systems such as gantry CMM and multi-joints artificial arm CMM, and so on. Basically, the main existing LVDM systems can be divided into two categories, i.e. centralized systems and distributed systems, according to the scheme of hardware configuration. By definition, a centralized system is a stand-alone unit which works independently to provide measurements of a spatial point, while a distributed system, is defined as a system that consists of a series of sensors which work cooperatively to provide measurements of a spatial point, and usually individual sensor cannot measure the coordinates separately. Some representative distributed systems in the literature are iGPS, MScMS-II, and etc. The current trend of LVDM systems seem to orient towards distributed systems, and actually, distributed systems demonstrate many advantages that distinguish themselves from conventional centralized systems

    Use of a Green Familiar Faces Paradigm Improves P300-Speller Brain-Computer Interface Performance

    Get PDF
    Background A recent study showed improved performance of the P300-speller when the flashing row or column was overlaid with translucent pictures of familiar faces (FF spelling paradigm). However, the performance of the P300-speller is not yet satisfactory due to its low classification accuracy and information transfer rate. Objective To investigate whether P300-speller performance is further improved when the chromatic property and the FF spelling paradigm are combined. Methods We proposed a new spelling paradigm in which the flashing row or column is overlaid with translucent green pictures of familiar faces (GFF spelling paradigm). We analyzed the ERP waveforms elicited by the FF and proposed GFF spelling paradigms and compared P300-speller performance between the two paradigms. Results Significant differences in the amplitudes of four ERP components (N170, VPP, P300, and P600f) were observed between both spelling paradigms. Compared to the FF spelling paradigm, the GFF spelling paradigm elicited ERP waveforms of higher amplitudes and resulted in improved P300-speller performance. Conclusions Combining the chromatic property (green color) and the FF spelling paradigm led to better classification accuracy and an increased information transfer rate. These findings demonstrate a promising new approach for improving the performance of the P300-speller

    Measurement strategy impact on dimensional inspection by portable camera-based measuring systems

    Get PDF
    In dimensional inspection of large objects, portable measuring systems are greatly involved in a wealth of applications, such as automotive, motorsports and aerospace industries. Metris K-series Optical CMM (Coordinate Measuring Machine) system is one of the metrology solutions with relatively high accuracy and flexibility. This paper focuses on measurement strategy via repeatedly measuring a length using Metris K610 camera system. The paper proposes a link between measurement strategy and the system performance that can be achieved. The result of the statistical analysis are also given based on the uncertainty propagation of the CMM

    Exploration of Computational Methods for Classification of Movement Intention During Human Voluntary Movement from Single Trial EEG

    Get PDF
    Objective: To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Methods: Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. Results: The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Conclusions: Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Significance: Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy

    A comparative study of the buffeting properties of FRP and steel box girder cable-stayed bridges

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore